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Asymptotic properties of the Green’s function of an electromagnetic field in the far zone of biaxial an-
isotropic media are examined, based on ideas proposed by Lax and Nelson [Phys. Rev. B 4, 3694 (1971)].
The rather complicated structure of the wave surface and the ray surface, in particular the existence of
their singular points, is taken into account. Starting from a detailed analysis of the wave-surface Gauss-
ian curvature, we find the directions of Green’s-function asymptotic behavior differing from the usual
R 7! relationship. These directions are the directions along the biradials of a biaxial medium, and the
infinite sets of directions defined by a wave vector directed along every one of the binormals. In the first
case, the asymptotical form of the Green’s function is proportional to R ~!/?; in the second case, this
asymptotical form is proportional to R ~*/%. A smooth transition from the asymptotic form proportional
to R 7!/ to the usual asymptotic form is analyzed. The possibility of an experimental observation of this
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unusual asymptotic behavior is discussed.

PACS number(s): 41.90.+e, 42.25.Bs, 78.20.Dj

I. INTRODUCTION

Modern methods of solving many optical problems are
based on an integral formulation of the electromagnetic-
field equations. Among these problems are scattering in
random and determined inhomogeneities, diffraction
problems, wave propagation in wave guides, etc. The in-
tegral formulation requires a determination of the
electromagnetic-field Green’s function—the field of a
point source. It is well known for unlimited isotropic
media. In this case, the Green’s function at a large dis-
tance R is a diverging spherical wave whose amplitude
decreases as R ~!. Difficulties appear if we begin to ex-
amine limited media or give up the condition of isotropy
[1].

We are interested in the special feature of the Green’s
function in unlimited undispersing anisotropic media. In
this case, the solution of the problem is rather complicat-
ed. A general approach was developed by Lax and Nel-
son [2,3]. In the case of uniaxial anisotropic media they
reported an explicit expression for the Green’s function
[3]. It consists of two terms connected with ordinary and
extraordinary waves whose amplitudes decrease as R !
at a large distance. The first term is a spherical wave.
An amplitude of the second term depends on the direc-
tion r=R /R, and its phase surface is an ellipsoid of revo-
lution. The Green’s function obtained for uniaxial media
has permitted the solution of the light-scattering problem
[4] and the calculation of the extinction coefficient [5,6]
in an ordered phase of nematic liquid crystals. Interest-
ing physical results has been obtained in this manner.
There is, for example, a principal difference between
ordinary- and extraordinary-beam propagation and
scattering [7].

The case of biaxial media has not been studied in de-
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tail. However, it is necessary to investigate defects in bi-
axial crystals, fluctuations in some liquid crystals (biaxial
nematic and smectic-C liquid crystals), etc.

In this paper we examine asymptotic properties of the
Green’s function in biaxial anisotropic media. In Sec. II
well-known general facts from the theory of wave propa-
gation in anisotropic media are presented. All relation-
ships are given in the invariant form in terms of wave
vectors and the ray vectors. The properties of the wave
surface and the ray surface and their connection are con-
sidered. In Sec. III the expression for the Green’s-
function (w,R) representation is obtained by the method
developed by Lax and Nelson [3]. Some inaccuracies of
their exposition are removed. A detailed analysis of the
contribution to the Green’s function from stationary
points dependent on their situation on the wave surface is
carried out. The existence of directions R, for which the
approach of Lax and Nelson is inapplicable, is shown (for
these directions, the corresponding contributions to the
Green’s function turn into zero or into infinity).

In Secs. IV and V a method for analyzing the Green’s-
function G(w,R) asymptotic behavior in the vicinity of
these special directions R is suggested. It is shown that
these asymptotic forms are not proportional to R ~! (they
are proportional to R ~!/2 or R 7°/%). The existence of
these unusual asymptotic behaviors for the field of the
point source is analogous to external and internal conic
refraction effects well known for plane waves in biaxial
media.

II. OPTICAL PROPERTIES OF BIAXTAL MEDIA

From the system of Maxwell’s equations for homo-
geneous nonmagnetic media we can obtain

(kAT —s®s)—(w/c ) *E]E(w,k)=4m(w/c *P(w,k) , (2.1)
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where k is the wave vector, s=k /k, w is the circular fre-
quency, E is the electric field intensity, P is the vector of
polarjzation induced by sources, € is the dielectric tensor,
and [ is the unit tensor. Here a®b is the tensor product
of the vectors a, b, i.e., the tensor with components a,bg.
The corresponding homogeneous system

[n%T—s®s)—€]E(w,k)=0, 2.2)

where n=|n| and the vector n is determined by the rela-
tionship k=(w/c )n, describes the normal waves that can
propagate in the media with dielectric tensor € The
dispersion equation (Fresnel’s equation) expressing the
determinant of the system (2.2) equaling zero has the
form

dete ~U(sfs)n*—[Tre ~!—(s€ ~'s)n2+1=0. (2.3)

Here we use the notation (f7g) for the total convolution
of vectors f and g and tensor 7.

The Fresnel’s equation has two roots in the general
case,

Tre ~'—(s& ls)—(— 1VALX(s) |

ng(s)= — , (2.4
2 det€ ~ ‘(s€s)
where j=1,2 and
A,(s)=[Tre ~'—(s€ ~!s)]*—4dete “'(sés) .  (2.5)

We see now that in the general case two normal waves
with a common direction of the wave vector s can propa-
gate in anisotropic media. Here and further the sub-
scripts 1 and 2 label the values connected with these two
waves. The absolute values of their wave vectors are
defined by Eq. (2.4). The directions of their polarization
vectors e;)=E;/E; for these waves are given by the
system (2.2). For biaxial media, we obtain

e (S)(n ()T —8)7 s . (2.6)

Taking into account the theorem of Kelly and Hamilton
from a matrix theory [8], we can rewrite Eq. (2.6) in a
more convenient form,

e;)(s)O(s)s , @.7
where the tensor O, j(s) is defined by
0)(s)=n?e+nl)(n}) —Tre)] +(dete)e ™" . (2.8)

Fresnel’s equation (2.3) describes the wave surface. In
the case of biaxial media, where the eigenvalues €, €,,
and €; of the tensor € are different, this surface self-
intersects and has four singular points (the points of self-
intersection). The directions s corresponding to these
points define two axes called the binormals. It is con-
venient to imagine this surface as the union of two closed
parts: the external part and the internal part. The sub-
script (1) corresponds to the external part and the sub-
script (2) corresponds to the internal part.

In analogy to the vector n, a wave can be described in
the terms of the ray vector m. The direction of this vec-
tor coincides with that of Poynting’s vector of the wave
and, generally speaking, does not coincide with the direc-
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tion of the vector n. We define the absolute value m of
the vector m as follows [9]:

(m-n)=1. (2.9)

The angle 6§ between the vectors n and m for the wave
propagating in an anisotropic medium is equal to the an-
gle between the vector of the electric field intensity E and
the vector of the electric field induction D=€E. This an-
gle is given by

1 efe
cos6=—=—(2i) . (2.10)
nm  (eg?)!/?
There is some correspondence between ray vectors and

wave vectors: the change

€51, no>m, E-D (2.11)

in any equation for the quantities €, n, and E leads to an
analogous correct equation [9]. In this way, it is easy to
obtain the equation

deté(re “lr)m*—[Tré—(réx)Im?+1=0, (2.12)

which is analogous to Eq. (2.3). Here the unit vector
r=m/m has been introduced. Equation (2.12) has two
roots in the general case,

Tré—(rér)+(— 1A %) |2

mU(r)= . (2.13)
2 deté(ré " Ir)
where j=1,2 and
A, (r)=[Tré—(rér)]*—4 deté(ré ~'r) . (2.14)

Thus, there are two normal waves [j =1 and j =2 in Eq.
(2.13)] for the defined direction r of a ray vector. Here
and further we use the superscripts 1 and 2 for the desig-
nation of values corresponding to these two waves. The
directions of the polarization vectors for them in a biaxial
medium are given by

()0 Yr)r, (2.15)
where
Q) =(m )28+ (m ") [(m V) 2—Tre|T
+(detd)e 1. (2.16)

Equation (2.12) describes the ray surface. The struc-
ture of the ray surface is analogous to that of the wave
surface. Directions r corresponding to the common
points of the internal and external ray-surface parts (the
points of self-intersection) define two axes called the bira-
dials. The superscript 2 in Eq. (2.13) is related to the
external part of the ray surface and the superscript 1 is
related to the internal part.

Every plane wave in a medium is characterized by its
own vectors n and m; moreover, in general, different
wave or different ray vectors correspond to different
plane waves. Thereby, there is some correspondence be-
tween wave-surface points and ray-surface points. If a
wave is characterized by the ray vector m, the wave-
vector direction s=n/n is defined as normal to the ray
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surface in the point determined by the vector m. On the
contrary, for a wave characterized by the vector n, its
propagation direction (i.e., the direction r=m/m of its
ray vector) is defined as normal to the wave surface in the
point determined by the vector n. The absolute values of
these vectors (n in the first case and m in the second case)
are defined by the relationship (2.9). The correspondence
between points of the wave surface and those of the ray
surface is one-to-one everywhere, except the singular
points of each surface.

The connection between the Gaussian curvatures of
the wave surface, K,, and the ray surface, Kg,,, in the
corresponding points is given by the relationship

K, Kgn =cos*d 2.17

(see the Appendix). Each surface Gaussian curvature
turns into infinity at its singular points. Thus Eq. (2.17)
shows that the Gaussian curvature turns into zero at the
points of each surface corresponding to the singular
points on the other surface. This can be easily seen from
the fact that, for the media we are interested in, § <7 /2.
Each of the four singular points on any surface corre-
sponds to the whole line of points (the circle) on the other
surface. The affirmation about the existence of two types
of waves, when the vector s is determined, is violated for
the vectors s directed along a binormal. In this case, the
whole cone of ray vectors, called the internal conic re-
fraction cone, corresponds to this vector s. Analogously,
the affirmation about the existence of two types of waves,
when the vector r is determined, is violated for the vector
r directed along a biradial. In this case, the whole cone
of wave vectors, called the external conic refraction cone,
corresponds to this vector r. The intersection of the
external conic refraction cone with the wave surface and
that of the internal conic refraction cone with the ray
surface give the circles of the points of the Gaussian cur-
vature equal to zero, described above.

The connection between the vectors m and n can be
written in an analytic form. Taking into account the fact
that the vector n is directed along the normal to the ray
surface, we can find the vectors n'/(r) (j=1,2) corre-
sponding to two normal waves with defined direction of
the ray vector r. By using Eqgs. (2.9) and (2.12)-(2.14), we
obtain

2 (r)=W o), (2.18)
where the tensor W Y)(r) is given by
()
Diey=( — 1" 50 1 »
W ()= VRVt —5 T, (2.19)

m

and m"” and A,, are defined by Egs. (2.13) and (2.14).
Note that the vector n"/(r) is always situated at the plane

. & (s)exp{ik-R}

of the vectors €“(r) and r [9]. The two terms in Egs.
(2.19) and (2.18) are connected with the expansion of n'/
by r=TIr and |0 V'r.

III. GREEN’S FUNCTION IN THE FAR ZONE:
GENERAL CASE

We define the Green’s function @(w,k) of an elec-
tromagnetic field by the equation

E(w,k)=47G(0,k)P(w,k) . (3.1)

It was shown by Lax and Nelson [2] that it was possible
to write the Green’s function G (w,k) for an anisotropic
medium in the form

6 (s)
G0, k)=(w/c? 3 oL
j=12 k —(w/c)?—i0
n(j)(s)
—5®s 3.2)
(s€s)
Here
A e(j)(s)®e(j)(s)
(j)(s e (3‘3)

[e(j)(s)é\e(j)(s)] ’

n;(s) is defined by Eq. (2.4), and e(j)(s) is defined by Eq.
(2.7). The third item in Eq. (3.2) corresponds to the lon-
gitudinal wave. The term —iO in the denominator of Eq.
(3.2) is connected with causality. Here we consider w > 0.
If w <0, it is necessary to change the term —i0 to +iO0.

If we are interested in the (w,R) representation of the
Green’s function, we must make a Fourier transforma-
tion of Eq. (3.2),

G(o,R)= [ ~ZE_G(0,Kexp(ik-R] . (3.4)

(27)3

For many optical problems, the inequality R >>A is
valid. That is why we are interested below in an asymp-
totic form of G(w,R) at a large distance R. The asymp-
totic behavior of the main contribution in Eq. (3.4) is pro-
portional to R ! when R — . At the same time, the
third term in Eq. (3.2) decreases as R % in the asymptotic
expansion of G(o,R). (It corresponds to the static dipole
field.) That is why we are interested in only the first and
second terms of Eq. (3.2).

A residue integration of integral (3.4) over the com-
ponent of k which is parallel to R and the transition in
the resulting two-dimensional integral from transverse to
R components of k to an integration over the surfaces
A lie, k=k(s)], j=1,2, yield

G(w,R)=(w/c)29‘?£’%2)_2 [ . daf,
(2m) i=12 " 4G A

n(j)(s)

2 (3.5)

The terms —i0 in the denominators of Eq. (3.2) defining the circumvention rule lead to the integration in Eq. (3.5) not
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over the entire surface A4 ; but over the part whose points satisfy the following condition: the projection of k; at R is
a positive value. We have designated this part as 4 (“;). This requirement provides for the existence of diverging waves

only in Eq. (3.5).
It was shown in [3] that

2
k 2k
v = . (3.6)
k n(j)(s) n(zj,(s)cosﬁ(j,(s)
Thus,
@(w,R)=(w/c)E&8uﬂz-£}— > it )dA(“;)(u,v)n(j,(u,v)cos8(j)(u,v)g(j,(u,v)exp{ik(j)(u,v)-R} , (3.7)
T ji=1.2 (Y

where u and v are the parametrized variables of the sur-
face of integration.

It is convenient to use a stationary-phase method to
evaluate an integral (3.7) in the far zone. The stationary-
phase condition

ok, 9k
du R= dv

selects the stationary points k;(r) on the surfaces of the
integration, where the surface normals are parallel to the
direction r=R /R. Actually, the surfaces of the integra-
tion in Eq. (3.7) are the external and internal parts of the
wave surface. As it was shown in Sec. II, this surface
normal direction coincides with the ray-vector direction,
so the solutions of Eq. (3.8) are given by Eq. (2.18),

k9 r)=(w/c)W 1) . (3.9)

‘-R=0, (3.8)

According to the stationary-phase method, it is neces-
sary to calculate the asymptotic behavior of G(o,R) to
expand the exponent in series up to the second-order ap-
proximation in the vicinity of the stationary points and to
change the other terms to their corresponding values at
the stationary points. The resulting Gaussian integral is
easily calculated and the Green’s function can finally be
written (cf. [3]) as

Go,R)= 3 G Yw,R),

j=12

(3.10)

where

o peoss)
4R K|

G o, R)=(w/c)? & Vexp{ikV R} ,

(3.11)

K ) are the wave-surface Gaussian curvatures at the sta-
tionary points n'”, and the values o depend on the
signs of the two principal curvatures A, and A, at the sta-
tionary points n” on the wave surface: o=—1 if A >0,
Ay >0, o=1 if A;<0, A,<0, and o=i if A;A,<0 (see
[10], Appendix II). Here the value A; is considered to be
positive if a shift from the stationary point along the
principal direction corresponding to A; gets the value
k"-r increasing. In our case, the wave surface can only
have two types of structure: A, <0, A, <0 (i.e., c =1) and
AA, <0 (i.e., o=i). Taking into account that K;=A A,
we can conclude that actually these two situations differ

only in the signs of the Gaussian curvatures. Thus we
can write for o'/ in Eq. (3.11)

o\'=exp{(i/2)argK{)} . (3.12)
By using Egs. (2.9), (2.10), and (2.17), Eq. (3.11) can be

transformed into

i ) 11/2
LA
47R  m\D

X & Vexp{i(w/c)(1/m )R},

G Nw,R)=(w/c)?

(3.13)

where o'/'=exp{(i/2)argk{) } and m?, e/ are defined
by Egs. (2.13) and (2.15). The calculation of K, is given
in the Appendix. It has been taken into account in Eq.
(3.13) that the sign of K is equal to the sign of K,
in the corresponding points, i.e., the equality o’=0{ is
valid.

Equation (3.13) is general and as applicable for isotro-
pic media as for uniaxial and biaxial anisotropic media.
[In isotropic and uniaxial media, it is necessary to modify
Egs. (2.7) and (2.15) for polarizations of normal waves in
these media.] In the isotropic and uniaxial cases, there is
one stationary point on each of the surfaces 4 J) from Eq.
(3.5). The situation is more complicated in the biaxial
case. If the vector r is directed out of the internal conic
refraction cone, there is one stationary point on each part
of the wave surface, as before [Fig. 1(a)]. In this case,
o'V=¢P=1. If r coincides with a generator of this
cone, one stationary point remains on the external part of
the wave surface (a(,,p= 1), and the other coincides with
the singular point of the wave surface, which is common
for its internal and external parts [Fig. 1(b)]. If, at last, r
is directed into this cone but does not coincide with a
biradial, both stationary points are situated on the exter-
nal part of the wave surface, and there are no stationary
points on its internal part [Fig. 1(c)]. In this case o!!’=1
and o{?)=i.

When the vector r is directed along a biradial, Eq. (3.8)
becomes degenerate: one direction of r corresponds to an
infinite set of wave vectors generated in the internal conic
refraction cone [see Fig. 1(d); O 4 and OB are two genera-
tors of this cone situated on the plane of the figure].
Equations (3.10) and (3.13) are inapplicable in this case.
Formally this fact is exhibited in the ray-surface Gauss-
ian curvature approaching infinity. It indicates that the
Green’s function G(w,R) decreases more slowly than
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FIG. 1. Arrangement of the stationary points k'’ on the
internal and external parts of the wave surfaces dependent on
the direction r. The wave surface is given in the section by the
plane containing singular points. (a) r is directed out from
internal conic refraction cone. (b) r is directed along one of
determinators of this cone. (c) r is directed into this cone. (d) r
is directed along biradial.

R 7! along this direction.

In the case of the vector r coinciding with a generator
of the internal conic refraction cone, the asymptotic
behavior of the term with j =2 in Eq. (3.10) also differs
from R ~!. This difference is exhibited in the ray-surface
Gaussian curvature approaching zero in the correspond-
ing points of this surface. In this case, G P(w,R) de-
creases more quickly than R ~1.

In Secs. IV and V calculations of the Green’s-function
asymptotic behavior are carried out for these two special
cases.

IV. THE CASE OF NEARLY BIRADIAL
RAY VECTORS

The direction r coinciding with a biradial (we designate
it as ry;;) corresponds to a ray-surface singular point. On
J
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the wave surface, the whole circle Q of stationary points
corresponds to this kind of ray-vector direction.

The standard approach to the phase-integral calcula-
tion in the situation with the whole line of stationary
points L, is to use the following variables in the vicinity
of L: the longitudinal variable, which characterizes the
shift along L, and the transverse variables, which
characterized the shift across L. Integrals over the
transverse variables are calculated by the ordinary
stationary-phase method, and, in the rest integral over
the longitudinal variable, there is no longer any large pa-
rameter (i.e., it is a numerical factor).

In our case, for the wave-surface description, it is con-
venient to pass to the cylindrical coordinate system
(p,¢,2z), in which the origin is situated in the center of the
circle 1, and the axis is directed along the biradial. We
choose the cylindrical coordinate system connected to the
Cartesian system of the tensor £s principal axes
(x1,x,,x3) by the relationships

p cos¢p=x cosp, —x;siny; —p, ,

psing=x, , 4.1)
z=xsin, +x;cosh, —el’?,
where
e—g, |12
tan¢v1=i i } ,
€378
(4.2)
| (B3 —g)(e—gy) 12
P1=7 € ’
2

0=v=w/2. For definiteness, we set here and throughout
that €, <g, <e;. Then the equation of the circle ) takes
the form: p=p,, z=0. This situation is shown in Fig.
1(d). The axis corresponding to the eigenvalue ¢, and the
plane of the circle  is perpendicular to the plane of the
figure. The value AB=2p, is a diameter of the circle Q,
and the point O’ is its center.

By rewriting Fresnel’s equation (2.3) in the Cartesian
coordinates connected with tensor £ principal axes and
taking into account Eq. (4.1), we can obtain that the
equation of wave surface takes the form

(P’ +2ppicosp+pi+22+2e} %2 ][ e,(p> +2pp cosp +p}) + (g, + ey — €, (22 +2e122)

—4e}%p(p cosp+p,)(z +el?)+4e,p?] —4e,p’plsin’p=0 .

(4.3)

Substituting p=p, and z =0 into Eq. (4.3), we find that this equation becomes an identity. It means that the circle Q is
really situated on the wave surface. It is convenient to choose the following parametrization for the wave surface:

z=z(p,P) .

4.4)

By using the surface equation (4.4) in the unexplicit form (4.3), it is not difficult to calculate the partial derivatives of the
function z(p,$) with respect to the variables p and ¢ up to second order at points of the circle (,
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2,(p1,$)=24(p1,8)=2,4(p1,$)=244(p1,4)=0 ,

2,,(p1,#)=—3"[£,5in%(¢ /2) +e,c0sX($/2)] [ e,5in2( /2) +esc08X(/2)] 7! .

Actually, the fact that the first derivatives in Eq. (4.5)
equal zero means that the wave-surface normals at every
point of the circle (2 have a common direction (along the
z axis). The second derivatives z,4 and z,4 (together with
z, and z,) equaling zero means that the wave-surface
Gaussian curvature in the points of circles () is equal to

zero. This fact can be seen from the relationship

exp{im/2}exp{i(w/c)e)/*R}
2

G(o,Ry,)=(w/c)’
87

X3 fA+ pdpqugm(p,¢)n(j)(p,¢)cosS(j)(p,d))exp{i(a)/c)z(p,¢)R} .

(4.5)

P2 P2 +249) — (P29 =2,
2 2,2 232
(p*+p°z,+2zy)

Ks(p, )= ) (4.6)

which is the consequence of Eq. (A7).
The integral (3.7) in terms of the variables p and ¢
takes the form

4.7)

ji=12"4gp

Let us calculate this integral over the transverse variable p (the variable ¢ is fixed) by the stationary-phase method.
There is no contribution in the main term of the asymptotic expansion from the term j =2 in Eq. (4.7), because the cir-
cle Q is situated on the external (j =1) part of the wave surface. Thus taking into account that at every point of the cir-
cle Q n;ycosd ;) =€}’ (e.)€e(;)) =¢,, we obtain

exp{im/4}exp{i(w/c)e)/*R}

G(o,Ry,)=(0/c)*?R "1/ v F, 4.8)
2(2)
where
poPr rom en)(p1,9)®e(p1,¢)
S 172 @.9)
e} Yo |2,0(P1,)
The vector e;)(p,,¢) can be written in the form
e)(ppd)=sin(¢$/2)a+cos(¢/2)b , (4.10)

where a is the unit vector directed along the principal axis of the tensor € corresponding to the eigenvalue &, and

b=rXa. Thus Eq. (4.9) can be rewritten in the form
F=(p,/¢3’*)(a®al, +b&bl,) ,

where the integrals

(4.11)

I,= foz"dqs sin®(¢/2)[e,sin*(¢/2)+e,c08%($/2) ][ e,5in*( /2) +e5c082($ /2)]'/2

I,= f:”dqb cos?(¢/2)[e,sin*(¢/2)+€,cos?(d /2)] [ e,5in*(d /2) +e5c08H( /2) ]2

can be represented, if it is necessary, as a sum of an ellip-
tic integrals. Thus for the beam propagating along the
biradial direction, the Green’s function asymptotically
decreases as R 7172,

For the description of the smooth transition from the
asymptotic form proportional to R ~!/2 for r=ry;, to the
asymptotic form proportional to R ! for other direc-
tions, we make use of the asymptotic representation that
is uniform with respect to the parameter characterizing
the deflection from the biradial.

Let us apply the stationary-phase method for the case
of r noncoincident with ry;, in the form similar to the case
of r=ry;,. Carrying out the first integration over the vari-
able p (the variable ¢ is fixed), we obtain that the station-

(4.12)

f

ary points become a function of the angle ¢: p =p(d).
It leads to the integral over the variable ¢ dependence on
the large parameter (w/c)R. (This dependence disap-
pears in the limit r—ry;;.) The integral over the variable
¢, as a function of the large parameter (w/c)R, gives us
the uniform asymptotic form we are interested in.

Let us confine our examination to the directions that
are deflected from the biradial on the small angle 8, only.
For convenience, let us represent vectors in the Cartesian
coordinate system connected with the cylindrical coordi-
nate system (4.1) by the relationships

x=pcosp , y=psing, z=z . (4.13)
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The linear approximation over 6, gives us

r=(0,cos¢,0sind, 1) , (4.14)

where the angle ¢, characterizes a deflection direction of
the vector r in the plane perpendicular to the axis z. If
the parameter 0, is rather small, the points py(¢#) are sit-
uated in the vicinity of the circle 2. That is why the

n(A,¢)=(p;+(p;+A)cosd,(p,+A)sing , e%/2+%zpp(p1,¢)A2) .

By using Egs. (4.14) and (4.16), we find that the exponent
term for j =1 in Eq. (3.7) takes the form

D. N. MOSKVIN, V. P. ROMANOYV, AND A. YU. VAL’KOV 48

quadratic approximation over the parameter A=p—p, is
rather good for the description of the wave surface
z=z(p,d),

z(p’¢):%zpp(pl9¢)A2 .

In this approximation, the vector n, as a function of the
variables A and ¢, can be written in the form

(4.15)

(4.16)

I
Let us carry out the integration by a stationary-phase
method over the variable A. In this way, the value

_ Bicos(¢—¢)

i(w/c)[p,6;c08¢,+(p,+A)0,cos(d— ;) Ay= 2, (o0 ) (4.18)
+8i/2+%zpp(pl’¢)A2]R : (4.17) is the stationary point. Thus we obtain
|
exp{im/4}el’?
G(o,R)=(w/c)*"? pl 3/2} zl/zplexp{i(a)/c)sé/zR}exp{i(w/c)p,cosdb,elR}
2(27)’“R
27 &)p1rd)
X d¢p————expli(w/c)pcos(¢—d;)0,R} . (4.19)
fO ¢|pr(p1,¢)|l/2 p{ P1 ¢ ¢1 1 }

This equality gives the asymptotic representation that is uniform with respect to the parameter (o /c)0,R, if the ine-
qualities 6, <<1,(@/c)BIR <<1 are valid. If the last inequality is not valid but 6, <<1, Eq. (4.19) becomes not strictly
asymptotical but still remains a rather good approximation. In the limit (w/c)8;R —O0, the exponent in the integral
over the variable ¢ tends to zero and Eq. (4.19) turns into Eq. (4.8) giving an asymptotic form proportional to R ~!/2. If
(w/c)8;R >>1, the integral over the variable ¢ in Eq. (4.19) can be calculated by a stationary-phase method. In this

case, the stationary points are ¢\!’=¢, and ¢\’ =¢,+, and we obtain for the Green’s-function asymptotic form

e1*p1expli(w/c)el/*R )

47R 6172

Glo,R)=(w/c)? G

j=12

where o'V=1, 0'¥=i. Equation (4.20) is equivalent to
Eq. (3.10), if we consider the deflection of the vector r
from the biradial to be small. The divergence of Eq.
(4.20) for 8,—0 is connected with the Gaussian curvature
of the ray surface approaching infinity in Eq. (3.12) in the
limit r—r;. The terms j=1 and j =2 in Eq. (4.20) cor-
respond to the two types of the extraordinary waves that
can propagate in a biaxial medium along the direction r.
Note that both terms j =1,2 are connected with the con-
tribution into G(w,R) from the external part of the wave
surface [j =1 in Eq. (3.7)].

V. THE CASE OF THE WAVE VECTOR
DIRECTED ALONG THE BINORMAL

For directions r coinciding with the generators of the
internal conic refraction cone, the Gaussian curvature of

. 6u)p1¢Y)
|zpp(p1’¢(j)

exp{i(®/c)p[cosp;—(—1)]0,R} ,  (4.20)

)|1/2

[

the wave surface for the term j =2 in Eq. (3.10) turns
into infinity. It is connected with the fact that the wave
vector k'?(r) corresponding to this choice of vector r is
directed along a binormal and reaches the singular point
of the wave surface which is common for its external and
internal parts. The calculation of the contribution into
the Green’s function G ®(o,R) corresponding to this
point requires a special examination. At the same time,
the wave vector k'(r) corresponds to the nonsingular
point on the wave surface, in which Gaussian curvature
is finite, and the corresponding contribution G ‘"(w,R)
can be found from Eq. (3.13) (it is the term with j=1).
The integral (3.7) that defines the asymptotic form of
G ?(w,R) is not quite usual for the stationary-phase
method in this case. First, as we have noted above, the
stationary point for G *(w,R) is situated at the singular
point of the wave surface. Second, the stationary point is
placed on a boundary of the integration regions for the
terms j =1 and j =2 in Eq. (3.7). According to general
principles of the stationary-phase method, the principal
contribution to the phase integral in this situation is the
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contribution from the vicinity of the singular point. For
calculation purposes, it is sufficient to keep the principal
terms of the asymptotic expansions of the phase function
and the nonexponential factor. Expanding the integra-
tion limits to infinity far from the singular-point zone, we
obtain the so-called canonical integral. This integral
defines the asymptotic form we are interested in.

For convenience of the calculation, let us use the cylin-
drical coordinate system (p,¢,z) with the origin O"' situ-
ated in the singular point of the wave surface and the axis
directed along the binormal [Fig. 1(b)]:

1443
p cosp = —x siny, +x;cosy, ,
psing=x, , 5.1
z=x,cosy, +x,sinh,—el’? ,
where
ees—e,) |2
€378
tany,= | ————— , 5.2
¢2 1’83(82‘—81) ] ( )
0=¢Y,=<7m/2. In terms of the variables (p,$,z), the

wave-surface equation (2.3) takes the form

[22+2e}%z +p?][e,ese; (22 426)%2) +£,p7sin’B + (e, +£5— £ ,6485 )picosid

+2e; e} %e} X(e3—€,) Aey—e) Az + el P)p cosp ] —(£;—e,)(e,— &, )pPsinZp =0 .

Let us choose the parametrization of the wave surface
by analogy with Sec. IV: z=z(p,¢). From Eq. (5.3) it is
not difficult to find the partial derivatives of z(p,¢) with
respect to p up to second order at the singular point
(p=0,z=0) on the external and internal parts of the wave
surface.

2()p(0,¢)=A[(— 1Y T —cosp] ,
(5.4)
Z(j1pp(0,¢)=—2B[1—(—1)V'D cos¢][1+(—1)E cos¢] ,

where

a=1
2

(e3+¢€,)(eytgg)
B=83 €\ TE

1/2
(e3—g,)(e;—g))
€183 ’

T2 , (5.5)
8e €3¢,
€37 & &g
e,+e; g +e

and the subscript j (j=1,2) refers to the external and
internal parts of the wave surface. The dependence on
the angle ¢ in Eq. (5.4) shows that the point (p=0,z=0)
is really singular. Taking into account Eq. (5.4), we can
write the expansion into series of z(;)(p,#) in the vicinity

,explim/2}explilo/c )el*zoR }
2

G (w,R)=(w/c)
87

X 3 [ pdpds & p.éInp,¢)cosdp,dlexplile/c)zog (ps IR}

ji=12 V)

after taking into account Egs. (5.6) and (5.8). Here
gi(p,$)=A[(— 1) " +cos(¢—26)]p—By;(d)p* .
(5.10)

Setting the first derivatives of g(;(p,#) with respect to p

(5.3)

f

of the singular point up to the second-order approxima-
tion,

2)(p,)=A[(—1Y Tl —cosplp—B;(d)p* , (5.6)
where
Bij($)=—32(jpp(0:) . (5.7)

By using Eq. (5.6), it is easy to see, specifically, that the
Gaussian curvature of the wave surface is really increas-
ing without bounds in the the vicinity of the point p=0.
Actually, for every angle ¢ the numerator of Eq. (4.6) is
progortional to p®, and the denominator is proportional
top".

It follows from Eq. (5.6) that in the vicinity of the
singular point, where we can neglect the term proportion-
al to p?, the wave surface z;,(p,¢) (j =1,2) is a cone. The
total combination of normals to this cone at its vertex is
the internal conic refraction cone. Let us characterize
vector r by the values (py,¢y,z,). For directions r coin-
ciding with the generators of the internal conic refraction
cone, we obtain

Po=2Azycosd ,
2o=(1+4 A%cos’p,) " '/% .
Then Eq. (3.7) yields for the contribution G 2}, R),

(5.8)

(5.9

[

and ¢ equal to zero, we find the stationary points in the
vicinity of the singular point:

Psp=0, Sj=2¢pt(2—j)m .

Expanding the functions g(;,(p,#) into series in the vicini-
ty of the stationary points (5.11), keeping the first

(5.11)
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nonzero terms, and introducing the variables p=p—p,,
and ¢ =¢— ¢, we find that the problem is reduced to the
calculation of the canonical integrals of the following
type:

fo“’dﬁ 7 dépexplitw/c)Cip+CopIR} ,  (5.12)

where C| and C, are constants. The singularity of the
stationary point in terms of the variables p and ¢ is

|

G P(w,R)=(w/c)”*R

_sqaexplin/8}T(3/4) explilw/cley’z0R}
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reflected in the existence of the term @2 in the ex-
ponent. Note that the inferior limit in the integral over
the variable g in Eq. (5.12) is equal to zero. It is connect-
ed with the fact that the stationary point is situated on
the boundary of the integration region.

It is easy to calculate the integral (5.12) integrated first
over the variable ¢ and then over the variable p. After
adding up the external and the internal parts of the wave
surface (j =1,2), we obtain

81’)’3/2

where I'(x) is the gamma function and

e)les—ey) |17
&3 8
e(r)=zy |— |2

cosg, , sing , {

e(e3—egy)

expressed in the principal axes of the tensor €.

The asymptotic decrease of the contribution G (w,R)
is proportional to R ~3/4, i.e., this contribution decreases
more quickly than the contribution G "(w,R) which is
proportional to R ~!. Thus for r directed along the gen-
erators of the internal conic refraction cone, two types of
the waves possessing different asymptotic behavior are

possible.

VI. CONCLUSION

Thus the Green’s function in biaxial media is rather
complicated. In almost all directions, it can be written as
a sum of these waves [Egs. (3.10) and (3.13)], that asymp-
totically decreases as R ~!. The polarization vectors of
these waves are perpendicular to each other. For r
directed along the generators of the internal conic refrac-
tion cone, there are also two waves with perpendicular
polarization vectors. The wave of one of the polariza-
tions possesses the usual asymptotic form proportional to
R 7! [the term j =1 in Eq. (3.13)], and that of the other
polarization possesses the asymptotic form proportional
to R ~3/4[Eq. (5.13)]. If r is directed along a biradial, the
Green’s function asymptotically decreases as R ~!/2. In
this case, the wave takes a form of one wave of the linear

FIG. 2. Angle dependence of In[1+ |TrG(w,R)|] in the sec-
tion by the plane containing biradials.

1Ay BN 20,)

82( 82 -

83(83_81

e?(r)ge r) , (5.13)

(5.14)

[

polarization [Egs. (4.8) and (4.11)]. This polarization re-
sults from adding up an infinite set of the waves with
different polarizations but equal phase factors [the in-
tegration over the variable ¢ in Eq. (4.9)]. Therefore, we
can conclude that the polarization properties of the wave
propagating along a biradial direction in a biaxial medi-
um is similar to those in an isotropic medium. If we re-
gard a point dipole as a source of the radiation, we can
obtain every preliminarily given polarization through its
rotation. Note that we can speak about polarizations for

(b)

FIG. 3. Angle dependence of (a) |TrG (w,R)| and (b)
ITrG *(w,R)| in the section by the plane containing biradials.
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the special directions only in the region where it is possi-
ble to consider this wave to be a plane wave.

For illustration of the Green’s-function dependence on
the direction r, it is convenient to regard the scalar quan-
tity |Tr6(a),R)|. The angle dependence of |Tr@(a),R)|
is shown in Fig. 2 in the section of the plane containing
biradials. The sharp maximums correspond to the transi-
tions to the asymptotic form proportional to R ~!/2,

For all directions except that in the vicinity of biradi-
als, the Green’s function may be written as a sum of two
contributions from the external and internal parts of the
wave surface: G (@, R) and G 2 w,R). Figure 3 illus-
trates the angle dependence of the scalar quantities
ITrG V(@,R)| and |TrG P(,R)| in the same section as
in Fig. 2. The minima in Fig. 3(b) correspond to the tran-
sitions to the asymptotic form proportional to R ~3/4,

If we apply Eqgs. (3.10) and (3.13) to all directions, the
values [Tr@ 2)w,R)| in the points of the minimum in
Fig. 3(b) would be equal to zero, and the values
lTr@(a),R)| in the points of the sharp maximum vicinity
in Fig. 2 would increase infinitely.

Note that the field decreasing more slowly than R ~!
does not violate the energy conservation law, because the
width of the peak corresponding to this asymptotic
behavior decreases, if the value R increases.

We emphasize that the results obtained in this paper
are related to the case of sources and receivers situated
inside a biaxial medium. For light-scattering problems,
the receiver is usually situated outside the medium, and it
is necessary to take into account some corrections con-
nected with the refraction of the light on the boundary of
the medium [3]. In particular for single scattering, these
refractive corrections cancel the Gaussian curvatures in
Egs. (3.11) and (3.13) exactly. It leads to the disappear-
ance of the unusual asymptotic behavior obtained in Secs.
IV and V. However, if we carry out our measurements
near the boundary of a biaxial medium (for example, on
this boundary), the effect of the unusual asymptotic
behavior of the field can be observed. Moreover, the rela-

tionship for the Green’s function inside the medium
without the refraction corrections is necessary for exam-
ination of multiple scattering. In the case of a biaxial
medium, the unusual asymptotic behavior discussed
above can lead to intensification of multiple scattering in
the special geometries of the experiment.

APPENDIX: GAUSSIAN CURVATURES
OF THE WAVE SURFACE AND THE RAY SURFACE

For a plane wave in a medium characterized by the
vectors n and m, we can write from Gaussian theorema
egregium [8]

dQ, =Kg,dA, ,
dQ,=Kg,dA4,, .

(A1)

Here d A, and d 4,, are the infinitesimal area elements of
the wave surface and the ray surface in the vicinity of the
points defined by the vectors n and m, and dQ,,,, dQ,, are
the infinitesimal solid angles which are determined by the
total of normals to area elements defined above. The area
elements d A, and dA4,, are considered to be connected:
the ray vectors that determine the area d 4,, correspond
to the vectors n determined the area d 4,. Occasionally
Egs. (A1) have been taken as the definition of a Gaussian
curvature [11]. Since a normal to d 4,, is directed along
n and a normal to d 4,, is directed along m, we can write

dQ,,=m %cosddA,, ,

(A2)
dQ,=n"%cosdd 4, .

By substituting Eq. (A2) into Eq. (A1) and taking into ac-
count Eq. (2.10), we obtain

2 — —— — — — —
(m1+m%+m§)(sl lm%‘*'ez lm%+£3 1m§>‘[£1 1(32 1“*"53 l)m%

K, K, =cos*s . (A3)
It is easy to rewrite Eq. (2.12) in the form
J
+e; Ner ey mi+es ey M+e; imdl+er ey ley =0, (A4)

where m |, m,, and m; are projections of the vector m at the principle axes of the tensor €, and we consider €, <g, <€;.
By taking into account the ray-surface symmetry, we can confine our examination to the region m; >0, m, >0, m; >0.

From Eq. (A4) we can obtain m; as a function of m |, m,:
mgj):f(j)(m],mz)
=[Les(—Bm,my)+(—1VAY2m,m,))]/2 .

Here

(AS)

Blm,my)=(e; '+ey hm?+(e5 ey Ima3—el ey ' +es ),

Almy,my)=pm,m,)—4e; 'y(m,,m,),

(A6)

- - - —1 =1 —1_ —1.—14 .— Y
ymy,my)=m?+mi)er'm2+e; ' m2)+e; e, ley l—er Ney 1 ey Dm?—e; Nep +e; Im2

and the superscript j (j =1,2) corresponds to the internal and external parts of the ray surface.
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In these terms, the Gaussian curvature of the ray surface can be found from the relationship [8]

. R 2
-
Kem= ()2 G2y (A7)
(I+f£Y"+ 19

where the subscripts 1 and 2 signify the partial derivatives of f(m,m,) to m, and m,. These derivatives are defined
by

por— Z2AB LA,
i 883—1A1/2f(j) ’
—4A3?B, +(—1Y(2A,A—A2)  (2AY28,—(—1)A;)?
i = —1A3/2 £()) - j)? ’ A
165 1A3/2f U 64ey 2Af Y

(24128, —(—1YA;)
Y 20— 44, iyl,z

1653—1A3/2f(j)

64e3 2011
Here i =1,2 and the partial derivatives of the functions A(m,m,), B(m,m,), y(m,m,) have the form
A =2BB;—4es 'y, , A;=2B]+2BB;—4e3 v
Ap=2B,B— 43 vy,
Bi=2(e; "+ey m; , By=2e]'+e5 ),
yi=2m,[2e7 'm?+(e; 1 +e; Dm3—e Wes Her D],

(A9)
y,=2m,[2e; 'mi+(e; M Hes mi—es Ner THes D],

yiu=12e] 'm3+2er ey, Dmd—2e; ey el ),
Yu=12e5'mi+2(e; ey Dm?—2e; ey T4 ),

vp=4e e Dmm, .
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